BAB 2 TINJAUAN PUSTAKA

2.1. Pengertian Minyak Lumas

Minyak lumas adalah zat cair atau benda cair yang digunakan sebagai pelumasan dalam suatu mesin untuk mengurangi keausan akibat gesekan dan sebagai pendingin serta peredam suara.

Pelumasan adalah pemberian minyak lumas antara dua permukaan bantalan yaitu permukaan yang bersinggungan dengan tekanan dan saling bergerak satu terhadap yang lain. Lubang minyak yang mengarah kepermukaan pena engkol seringkali digurdi pada sudut sekitar 30 derajat mendahului titik mati, sehingga cangkang atas menerima minyak sebelum langkah penyalaan dan pada titik yang tekanannya relative rendah. Menurut Maleev (1991)

Menurut Maanen (1991), Pelumasan dapat dibedakan sebagai berikut :

1. Pelumasan hidrodinamis

Pada bentuk pelumasan ini, maka antara poros dan bantalan selalu terdapat suatu lapisan pelumas.Lapisan pelumas tersebut mencegah hubungan langsung antara material, poros dan material bantalan.

2. Pelumasan hidrostatis

Pelumasan hidrostatis hanya akan tercapai, bila kedua permukaan gesekan memiliki kecepatan yang cukup tinggi satu terhadap yang lainnya. Pada waktu start jalan dan setelah berjalan dari poros dalam bantalan, maka akan terjadi suatu periode pelumasan batas dalam setiap hal.

3. Pelumasan batas

Pelumasan batas dalam mana terjadi hubungan langsung antara material poros dan bantalan. Akan membawa keausan dengan cepat dari material bantalan akan tetapi juga sering material poros.

2.2. Prinsip Pelumasan

Menurut Maleev (1991), Mengemukakan bahwa bagaimanapun juga halusnya dan tepatnya persatuan logam dapat dilihat atau dirasakan, tetapi sebenarnya tidak rata melainkan terdiri atas titik yang tinggi dan rendah, kalau satu permukaan meluncur diatas permukaan yang lain dan suatu gaya menekannya terhadap permukaan yang lain tersebut, maka titik yang tinggi pada kedua permukaan akan saling mengunci dan menghambat gerak relatif. Dalam meluncur dan mengatasi hambatan ini, maka permukaan yang keras akan melepaskan sebagian dari titik yang tinggi dan permukaan yang lunak tetapi pada saat yang sama dapat kehilangan sebagian dari titik tingginya sendiri. Hambatan untuk meluncur ini disebut gesekan (*friction*), pelepasan titik yang tinggi (*wear*).

Pemilihan serta perlakuan pelumas didalam kaitannya dengan operasi mesin tentunya bukan sekedar asal melumuri saja, akan tetapi mempunyai makna dan tujuannya yang banyak dan komplek serta itu semua disesuaikan dengan objek yang dilumasi, bagaimana lingkungannya, bagaimana tinggi rendahnya temperatur operasinya, sifat—sifat bahan pelumas terhadap objek, kecepatan putar ataupun kecepatan linier dari objek yang dilumasi.Menurut Suharto (1991)

Poros dibebani dengan sebuah gaya dengan arah tegak lurus kebawah, sehingga lapisan pelumas antara poros dan bantalan terdesak keluar. Akibatnya terjadi hubungan antara poros dan material bantalan. Bila poros diputar, maka akibat adhesi minyak pelumas antara poros dan bantalan akan ditarik. Pada kecepatan sudut yang cukup besar tekanan dalam lapisan pelumas sedemikian besar sehingga terjadi keseimbangan dengan beban poros sehingga poros akan terangkat oleh lapisan pelumas dan memutuskan hubungan metal dengan poros. Menurut Maanen (1992)

2.3. Tujuan Pelumasan

Tujuan pelumasan atau fungsi dari pelumasan ialah sebagai berikut :

1. Sebagai peredam

Piston, batang *piston* dan poros engkol merupakan bagian mesin menerima gaya berfluktuasi, sehingga saat menerima gaya tekan yang besar memungkinkan menimbulkan benturan yang keras dan menimbulkan suara berisik. Pelumas berfungsi untuk melapisi antara bagian tersebut dan meredam benturan yang terjadi sehingga suara mesin lebih halus.

2. Mengurangi gesekan

Mesin diesel terdiri dari beberapa komponen, terdapat komponen yang diam dan ada yang bergerak. Gerakan komponen satu dengan yang lain akan menimbulkan gesekan, dan gesekan akan mengurangi tenaga, menimbulkan kehausan, menghasilkan kotoran dan panas. Guna mengurangi gesekan maka antara bagian yang bergesekan di lapisi minyak pelumas.

3. Sebagai anti karat

Sistem pelumas berfungsi untuk melapisi logam dengan oli, sehingga mencegah kontak langsung antar logam dengan udara maupun air dan terbentuknya karat dapat di hindari.

4. Mengendalikan terjadinya getaran

Jadi disini mempunyai aspek yaitu Menjaga kelemahan bahan karena beban-beban ekstra dari getaran-getaran mesin.

5. Sebagai penghantar panas

Pelumas berfungsi sebagai penghantar panas. Pada mesin dengan kecepatan putaran tinggi, panas akan timbul pada bantalan sebagai akibat dari adanya gesekan yang banyak. Dalam hal ini pelumas berfungsi sebagai penghantar panas dari bantalan untuk mencegah peningkatan temperatur atau suhu mesin.

2.4. Sifat – Sifat Minyak Lumas

Menurut Maleev (1991), Menjelaskan bahwa sifat minyak lumas baik fisik maupun kimia, ditentukan dengan penyajian yang sama dengan yang digunakan untuk menguji bahan bakar. Pembahasannya akan diurutkan menurut pentingnya :

1. Viskositas adalah sifat yang paling penting yang menunjukkan kefluidaan relative dari minyak tertentu. Jadi merupakan ukuran dari gesekan fluida, atau tahanannya, yang akan diberikan oleh molekul atau partikel minyak satu sama lain kalau badan utama dari minyak sedang bergerak, misalnya dalam sistem peredaran makin berat atau makin malas gerakannya, berarti viskositas lebih tinggi.

Titik tuang adalah suhu pada saat minyak tidak mau mengalir ketika tabung diuji diletakkan 45 derajat dari *horizontal*. Titik tuang yang relatif tinggi mempengaruhi kemampuan untuk memompa minyak melalui sistem pelumasan mesin dengan sejumlah tabung dan *orifis* yang berukuran kecil.

- Residu karbon adalah jumlah karbon yang tertinggal setelah zat yang dapat menguap telah diuapkan dan terbakar dengan pemanasan minyak. Ini akan menunjukkan jumlah karbon yang dapat diendapkan dalam mesin yang akan mengganggu operasi.
- 3. Titik nyala adalah suhu pada saat uap minyak diatas minyak akan menyala kalau dikenai api kecil. Titik nyala dari minyak lumas di tentukan dengan metode yang sama seperti yang digunakan untuk minyak bahan bakar. Titik nyala dari berbagai minyak lumas *diesel* bervariasi dari 340 sampai 430 F.
- 4. Air endapan adalah minyak diuji dengan pemusingan dan harus bebas dari air dan endapan,Kotoran akan terikat dan masuk ke dalam minyak kemudian tinggal didalam saluran minyak.
- 5. Keasaman adalah minyak lumas harus menunjukkan reaksi netral kalau diuji dengan kertas litmus. Minyak yang asam cenderung mengkorosi atau melubangi bagian mesin dan membentuk emulsi dengan air serta membentuk lumpur dengan karbon.
- 6. *Emulsi* adalah campuran minyak dengan air yang tidak terpisah menjadi komponennya, yaitu minyak dan air disebut disuatu emulsi. Minyak lumas

- tidak boleh membentuk *emulsi* dengan air. Kalau dikocok dengan air harus segera terpisah darinya. Kemampuan untuk memisah ini terutama penting setelah minyak digunakan untuk beberapa waktu.
- 7. *Oksidasi* adalah minyak tidak boleh memiliki kecenderungan yang kuat untuk *teroksidasi*, karena oksidasi menyebabkan pembentukan lumpur. *Oksidasi* dan pembentukan lumpur dalam *carter* atau dimana saja dalam sistem pelumasan mesin *diesel* tidak dikehendaki, karena kemungkinannya untuk mengganggu aliran minyak dan melemahkan pelumasan dalam bagian yang penumpukan lumpur.
- 8. Abu (*ASH*) dalam minyak adalah ukuran benda yang dapat menyebabkan pengikisan atau kemacetan dari bagian bergerak yang bersinggungan.
- 9. Belerang adalah belerang bebas atau campuran korosi dari belerang tidak diperbolehkan dalam minyak lumas karena mereka mempunyai kecenderungan untuk membentuk asam dengan uap air. Campuran bukan korosi dari belerang diperbolehkan sampai batas tertentu.
- 10. Warna minyak lumas tidak ada hubungannya dengan mutu pelumasannya.
- 11. *Gravitasi* adalah pada umumnya minyak yang viskositasnya tinggi maka gravitasinya tinggi, tetapi tidak ada hubungannya antara kedua karakteristik minyak ini.
- 12. *Oksidasi* adalah minyak tidak boleh memiliki kecenderungan yang kuat untuk teroksidasi, karena oksidasi menyebabkan pembentukan lumpur. *Oksidasi* dan pembentukan lumpur dalam *carter* atau dimana saja dalam sistem pelumasan mesin *diesel* tidak di kehendaki, karena kemungkinannya untuk mengganggu aliran minyak dan melemahkan pelumasan dalam bagian yang penumpukan lumpur.

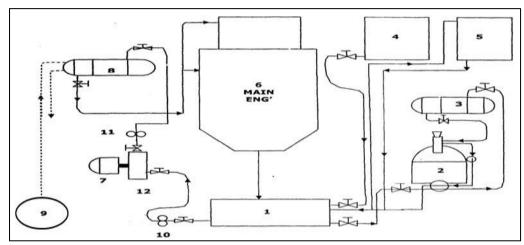
2.5. Pengaruh Temperatur Terhadap Viskositas Minyak Lumas

Viskositas adalah sifat yang menentukan besar daya tahan fluida terhadap gaya geser. Hal ini terutama diakibatkan oleh saling pengaruh antara molekul-molekul fluida. Viskositas zat cair menyebabkan terbentuknya gaya geser antara elemen-elemennya. Bila suatu fluida mengalami geseran, ia mulai bergerak dengan laju regangan yang berbanding terbalik dengan suatu besaran yang disebut koefisien viskositas, viskositas dinamis.

Viskositas berkurang dengan naiknya suhu dan ditentukan dangan *viskosimeter saybolt* dengan *orifis universal*. Viskositas minyak disel dari berbagai mesin bervariasi dari 100 sampai 500 SSU pada 130F. Gesekan, keausan mesin, dan penggunaan minyak pada dasarnya tergantung pada viskositas minyak.

Menurut Jackson and Morton (2003), Bisa didenfinisikan sebagai tahanan fluida yang berubah bentuk. Yang mana seharusnya gesekan molekular dalam dan molekul pada fluida menghasilkan fluida oleh pengaruh tahanan geseskan. Tingginya viskosiatas maka lebih cenderung kearah pelumasan *hydrodynamic*. Tentunya tipe minyak pelumas, air atau grease dan temperatur itu sangat penting. Temperatur bisa naik melalui sirkulasi pelumas yang tidak cukup untuk menghilangkan panas disebabkan di dalam bearing, ini bisa disebabkan oleh celah yang terlalu kecil atau penyuplaian oli yang tidak cukup.

Kekentalan mutlak sukar untuk ditentukan, dalam prakteknya yang dicari adalah kekentalan relatifnya yaitu perbandingan antara kekentalan zat itu dengan kekentalan zat cair lainnya (biasanya sebagai pembanding digunakan air).


Besaran-besaran yang terkandung dalam hukum *stokes* merupakan besaran-besaran yang secara teknis sudah ditentukan besarnya., kecuali harga (*koefisien viscositas*)dan V (kecepatan benda). Oleh karena itu, terbuka kemungkinan untuk memanfaatkan hubungan ini untuk menentukan viskositas *fluida*, apabila dengan suatu harga V dapat ditentukan maka harga dapat dihitung dari persamaan.

2.6. Persyaratan Pelumasan Mesin

Menurut Maleev (1991), Suatu pelumasan mesin yang ideal harus memenuhi persyaratan sebagai berikut :

- Memelihara film minyak lumas yang baik pada dinding silinder hingga mencegah keausan berlebihan pada landasan silinder, torak, dan cincin torak.
- 2. Mencegah pelekatan cincin torak.
- 3. Merapatkan kompresi dalam silinder.
- 4. Tidak meninggalkan endapan karbon pada mahkota dan bagian atas dari torak dan dalam lubang buang, lubang bilas.
- 5. Tidak melapiskan cat pada permukaan torak suatu silinder.
- 6. Mencegah keausan bantalan.
- 7. Mencuci bagian dalam mesin.
- 8. Tidak membentuk Lumpur, penyumbatan saluran minyak, lapisan dan saringan atau meninggalkan endapan dalam pendingin minyak (*oil cooler*).
- 9. Dapat di gunakan dengan sembarangan jenis saringan.
- 10. Penggunaannya hemat.
- 11. Memungkinkan selang waktu lama antara penggantian.
- 12. Mempunyai sifat baik pada start dingin.

2.7. Sistem Pelumasan

Sumber: https://spotdunialautku.blogspot.com/2018/05/sistem-pelumasan-

mesin-di-kapal.html?m=1

Gambar 1 Sistem Pelumasan

Keterangan:

1 : Lub Oil sump tank

2 : LO Purifier

3 : Heater

4 : LO Storage tank

5 : LO Heating tank

6: Main Engine

7 : LO Pump electric motor

8 : LO Cooler

9: S W Cooling pump

10 : Suction Filter

11 : Discharge filter

12 : LO Pump

Pada umumnya sistem pelumasan yang sering digunakan pada mesin dibagi atas dua bagian yaitu :

a. Sistem Pelumasan Kering

Sistem pelumasan kering yaitu minyak lumas ditampung ditempat yang lain yaitu sump tank. Di kapal sistem pelumasan yang digunakan adalah sistem pelumasan kering yaitu sistem pelumasan tekanan penuh yaitu minyak berasal dari tempat penampungan (*sump tank*) yang disirkulasikan dengan pompa dengan tekanan tertentu kebagian-bagian mesin yang memerlukan pelumasan kemudian minyak kembali ke tangki penampungan (*sump tank*).

Pada sistem pelumasan yang digunakan di kapal sebelum menghidupkan mesin maka diharuskan melakukan pelumasan awal engkol, torak, mahkota torak, (*piston crown*), bantalan utama *connecting rod*, silinder, komponen penggerak katup, *turbocharger*.

Sirkulasi minyak mulai diserap oleh pompa roda gigi dari tangki penampungan (*sump tank*) kemudian disaring oleh saringan minyak lumas (*oil filter*) kemudian minyak lumas itu didinginkan di pendingin minyak (*L.O Cooller*) kemudian minyak lumas tersebut melumasi bagian-bagian yang memerlukan pelumasan itu minyak lumas kembali ke tangki penampungan (*sump tank*).

b. Sistem Pelumasan Basah

Sistem pelumasan ini pada mumumnya dipergunakan pada mesin kapal yang berdaya rendah.Ini disebabkan karena konstruksinya yang masih relatif sederhana.Pada sistem pelumasan basah pompa minyak lumas memompa minyak lumas dari bak minyak pelumas kedalam mangkok minyak pelumas pada setiap pangkat batang engkol bergerak mencebur ke dalam mangkok tersebut dan memercikkan minyak pelumas dari dalam mangkok membasahi bagian-bagian yang harus dilumasi.

2.8. Fungsi Bagian-Bagian Sistem Pelumasan Dan Yang Di Lumasi

Fungsi Pesawat Pemindah Panas Minyak Lumas dan penunjang sistem

pelumsan mesin *diesel*.Definisi dari sistem pelumasan adalah sistem yang berfungsi untuk mensuplai minyak lumas yang berasal dari *service tank* menuju *main engine*. Berikut merupakan komponen dan fungsi yang ada pada sistem minyak lumas serta bagian yang di lumasi pada mesin *diesel* antara lain:

1. L.O Cooler

L.O. Cooler merupakan sebuah alat pendingin dimana minyak pelumas yang mempunyai kenaikan temperatur akibat panas gesekan dan panas jenis lainnya didalamsebuahalatyaituL.O Cooler akan didinginkan oleh air laut dengan cara bersinggungan, yang mana temperatur minyak lumas akan diserap panasnya oleh air laut yang berada dalam pipa-pipa kapiler yang selanjutnyatemperatur minyak pelumas akan mengalami penurunan akibat penyerapan oleh air laut.

2. Fungsi Pompa Air Tawar (Fresh Water Pump)

Memompa air tawar didalam system *L.O Cooler*, untuk menyerap panas yang bersinggungan.

3. Fungsi Filter Oli

Mesin *diesel* menggunakan *filter* dua elemen yang terdiri dari elemen aliran penuh dan elemen *by- pass*. Elemen aliran penuh di tempatkan antara *oil pump*. Elemen aliran penuh menyaring kotoran-kotoran yang mempengaruhi kerja bagian mesin yang berputar dan Elemen *by- pass* menyaring kerak karbon yang tercampur jadi satu di dalam minyak pelumas. Kedua elemen ini mengalirkan minyak pelumas yang sangat bersih dan menjaga kualitas pelumasan dan temperatur pada bagian-bagian mesin.

4. Fungsi Pompa Minyak Lumas.

Pompa merupakan sebuah komponen yang digunakan untuk memindahkan minyak lumas dalam sistem pelumasan. Jenis pompa yang

biasa digunakan pompa jenis roda gigi tetapi pompa roda gigi yang sering digunakan pompa ini digunakan pada pelumasan awal/*priming pump* dan sebagai pompa sirkulasi awal di dalam mesin.

Pompa untuk pelumasan awal dioprasikan secara manual dan terpisah dari mesin induk. Pompa ini disebut pompa transfer karena mampu menghisap atau memindahkan minyak dari tangki edar ke dalam karter. Setelah minyak lumas mengalami siklus dan kembali ketangki edar, pompa tersebut di matikan dan secara otomatis peranan pompa ini di gantikan oleh pompa sirkulasi yang terdapat pada mesin induk.

5. Bagian-Bagian Yang Saling Bergesekan Misalnya:

- a. Antara torak dan tabung silinder
- b. Antara poros dengan bantalan poros
- c. Antara roda-roda gigi dan sebagainya.

2.9. Faktor – Faktor Yang Mempengaruhi Viskositas

Faktor- faktor yang mempengaruhi viskositas adalah :

1. Suhu

Viskositas berbanding terbalik dengan suhu. Jika suhu naik maka viskositas akan turun, dan begitu juga sebaliknya. Hal ini di sebabkan karena adanya gerakan partikel – partikel cairan yang semakin cepat apabila suhu di tingkatkan dan menurun kekentalannya.

2. Konsentrasi Larutan

Viskositas berbanding lurus dengan konsentrasi larutan. Suatu larutan dengan konsentrasi tinggi akan memiliki viskositas yang tinggi pula karena konsentrasi larutan menyatakan banyaknya partikel zat yang terlarut tiap satuan volume. Semakin banyak pertikel yang terlarut, gesekan antar partikel semakin tinggi dan viskositas semakin tinggi pula.

3. Berat Molekul

Viskositas berbanding lurus dengan berat molekul *solute*. Karena dengan adanya *solute* yang berat akan menghambat atau memberi beban.

4. Tekanan

Semakin tinggi tekanan semakin besar viskositas cairan.

5. Gesekan

Gesekan merupakan gaya yang berarah melawan gerak benda atau arah benda akan bergerak. Gaya gesek muncul apabila dua buah benda bersentuhan, gaya gesekan akan semakin berat jika permukaan benda semakin kasar, dan semakin berat mengakibatkan visikositas suhu tekanan pada temperatur.

Minyak lumas sendiri dapat di klasifikasikan berdasarkan visikositas dan kondisi operasi. Menurut klasifikasi *API (American Petrolium Institute)* pelumas untuk mesin diesel di bagi menjadi empat bagian yaitu: diesel beban ringan, diesel beban sedang, *diesel* beban berat. dan minyak lumas yang di gunakan untuk *main engine* adalah *barcode* dan dengan nilai kekentalan SAE 30 atau SAE 40. Dalam pemilihan minyak lumas sebaiknya mengacu pada buku *manual book* mesin *diesel* yang bersangkutan . Hal ini di karenakan agar tidak terjadi kesalahan pemilihan minyak lumas yang mengakibatkan kerusakan pada komponen mesin dan temperatur pada mesin induk tetap terjaga dan stabil. Pengontrolan pemakaian dan pemilihan di mulai dari beberapa jumlah dan sifat-sifatnya. Pada pelaksanaan pemakaian minyak lumas untuk mesin induk haruslah di kontrol sejauh mana dan berapa banyak pemakaian sebenarnya jika terjadi penyimpangan agar di periksa secepat mungkin. Menurut Hamrullah (2014),

kandungan oli mesin yang paling rawan karena berkaitan dengan ketebalan oli mesin atau seberapa besar resistensinya untuk mengalir. Kekentalan oli mesin ini langsung ber-kaitan dengan sejauh mana oli mesin berfungsi sebagai pelumas sekaligus pelindung benturan antar permukaan logam. Semakin kental oli mesin, maka lapisan yang ditimbulkan menjadi lebih kental. Lapisan halus pada oli mesin yang kental memberi kemampuan ekstra menyapu atau membersihkan permukaan logam yang terlumasi

dengan tepat untuk menambah atau mengawetkan usia pakai (*life time*) mesin.

2.10 Prinsip Kerja Pelumasan Mesin Induk TB.ASL PROGRESS:

- 1. Oli baru dari drum dipompa menuju tanki *storage*
- 2. Oli dari tangki *storage* disaring selanjutnya dimasukkan kedalam *system*
- 3. Didalam *system* oli dipompa kedalam bagian-bagian melumasi yang bergerak didalam *Calter* Mesin Induk
- 4. Setelah oli melumasi bagian-bagian yang bergerak, oli dipompa dan didinginkan menggunakan *LO Cooler*
- 5. Selanjutnya oli terjadi penurunan suhu dan digunakan untuk melumasi bagian-bagian mesin induk tadi
- 6. Jika viskositas oli itu rendah maka oli harus segera diganti dengan yang baru dan bila mana oli itu didalam *calter* kurang segera ditambahkan.